Select start of calculation:

Date: 1 September 2014
Time: $12: \sqrt{50}: \sqrt{00} . \sqrt{00}$

\qquad Select duration:

Local Sponsors: Your name?

Bright Satellites

- Tracking of satellites all over the sky.
- Searching for satellites found within a certain area (given by celestial coordinates and diameter). This point is taken from the last starchart geometry. To change the center and diameter, click here (field of view must be at least 1° and at most $909 . S$ atellites are sorted by ascending elongation from selected center point. For the listed events the conjunction must not take place during the selected time window, but the satellites must be within the search radius. If you are a astro photographer, you can also find the time interval where no LEO satellite will pass through your field of view.

Magnitude cutoff used for the following list: $\sqrt{6}$ Mag. (\square Manual selection)
Visible or not: Calculate all passes, day or night, even if not optically visible

Monday 1 September 2014

			angular velocity: 0.40° Disappears 12h55m40s	$\begin{aligned} & \text { /s } \\ & 7.1 \mathrm{mag} \end{aligned}$	$a z: 176.5$		horizon
5	12h50m00s	$\begin{aligned} & \quad \begin{array}{l} \text { Cosmos } 2058 \\ \quad(20465 \\ 1990-010-A) \\ \rightarrow \text { Ground track } \rightarrow \text { Star chart } \end{array} \\ & \rightarrow \text { and } \end{aligned}$	Daylight passAppears $\quad 12 \mathrm{~h} 38 \mathrm{~m} 48 \mathrm{~s}$Culmination $\quad 12 \mathrm{~h} 44 \mathrm{~m} 50 \mathrm{~s}$distance: 1052.2 km heangular velocity: 0.41 Disappears 12h50m52s	8.4mag 6.2 mag ght abov /s 6.8 mag	az:161. az: 90. Earth: az: 19.	SSE E .5k NNE	```horizon h:30.1' elevation of Sun: +48' horizon```
(3)	12h50m00s	Gravity ProbeB $(28230$ $2004-014-A)$ \rightarrow Ground track \rightarrow Star chart	Daylight pass Appears 12h41m43s Culmination 12h48m19s distance: 794.2 km he angular velocity: 0.54 Disappears 12h54m58s	8.2 mag 5.1mag ht above /s 6.8 mag	az:189.5 az:271.9 Earth: 6 az:354.6	S W .8k N	```horizon h:52.1' elevation of Sun: +49``` horizon
(3)	12h50m00s	```Cosmos 2233 Rocket (22488 1993-008-B) \rightarrow G \text { Ground track } \rightarrow \text { Star chart}```	Daylight pass Appears $\quad 12 \mathrm{~h} 35 \mathrm{~m} 48 \mathrm{~s}$ Culmination $\quad 12 \mathrm{~h} 44 \mathrm{~m} 02 \mathrm{~s}$ distance: 1767.4 km he angular velocity: 0.24 at Meridian Disappears Din51m40s	8.1mag 6.2 mag ght abov /s 7.2 mag 7.3 mag	az:222.7 az:292.2 Earth: az: 0.0 az: 2.1	SW WNW 6.1 N N	```horizon h:28.0 elevation of Sun: +48' h:2.30 horizon```
3	12h50m00s	```Cosmos 1550 Rocket (14966 1984-043-B) ->Ground track ->Star chart```	Daylight pass Appears $\quad 12 \mathrm{~h} 40 \mathrm{~m} 19 \mathrm{~s}$ Culmination	8.8mag 6.4 mag ght abov /s 7.5 mag 7.8 mag	az:211.8 az:287.8 Earth: az: 0.0° az: 4.2	SSW WNW 9.8 N N	```horizon h:38.7}\mp@subsup{}{}{\circ elevation of Sun: +49 h:5.5* horizon```
38	12h50m00s		Daylight pass Appears $\quad 12 \mathrm{~h} 40 \mathrm{~m} 35 \mathrm{~s}$ Culmination $\quad 12 \mathrm{~h} 46 \mathrm{~m} 35 \mathrm{~s}$ distance: 784.0 km he angular velocity: 0.56 Disappears 12 h 52 m 30 s	7.1 mag 5.4 mag ht above /s 8.5 mag	az:344.0 az:267.0 Earth: 5 az:189.5	NNW W . 6 km S	```horizon h:41.6 elevation of Sun: +49 horizon```

5	12h50m21s	Cosmos 2428 Rocket $\begin{aligned} & (31793 \text { 2007-029-B) } \\ & \rightarrow \text { Ground track } \rightarrow \text { Star chart } \end{aligned}$	
(3)	12h50m32s	$\begin{array}{r} \text { Spot } 4 \\ (25260 \\ 1998-017-A) \end{array}$ \rightarrow Ground track \rightarrow Star chart	
(3)	12h51m39s		
\%	12h52m42s	$\begin{array}{r} \text { Sich } 1 \\ (23657 \\ 1995-046-A) \end{array}$ $\rightarrow \text { Ground track } \rightarrow \text { Star chart }$	
(5)	12h53m04s	```Cosmos 1464 Rocket (14085 1983-048-B) ->Ground track ->Star chart```	

58	12h53m29s	```USA 238-B/NOSS-3 6(B) (38773 2012-048-P) ->Ground track ->Star chart```	Daylight pass distance: 1424.7 km height above Earth: 1087.8 km elevation of Sun: $+49^{\circ}$ angular velocity: $0.31^{\circ} / \mathrm{s}$ Disappears 13h02m46s 8.1mag az:116.5º ESE horizon
8	12h53m35s	$\begin{aligned} & \text { USA 238/NOSS-3 } \\ & \begin{array}{l} \text { (38758 2012-048-A) } \\ \rightarrow \text { Ground track } \rightarrow \text { Star chart } \end{array} \end{aligned}$	
5	12h54m01s	Cosmos 921 Rocket $(10096$ $1977-055-B)$ \rightarrow Ground track \rightarrow Star chart	Daylight pass distance: 1972.4 km height above Earth: 642.9 km elevation of Sun: $+49^{\circ}$ angular velocity: $0.23^{\circ} / \mathrm{s}$ Disappears 12h59m19s 7.8mag az:100.9 ${ }^{\circ} \mathrm{E}$ horizon
(3)	12h55m51s	$\begin{aligned} & \text { Spot } 5 \\ & \quad(27421 \\ & 2002-021-A) \\ & \rightarrow \text { Ground track } \rightarrow \text { Star chart } \end{aligned}$	Daylight pass distance: 1259.6 km height above Earth: 832.3 km elevation of Sun: $+49^{\circ}$ angular velocity: $0.34^{\circ} / \mathrm{s}$ Disappears 13h03m13s 8.6mag az:221.2 ${ }^{\circ} \mathrm{SW}$ horizon
(3)	12h55m55s	$\begin{aligned} & \text { Cosmos } 1400 \\ & \text { Rocket } \\ & (13403 \text { 1982-079-B) } \\ & \rightarrow \text { Ground track } \rightarrow \text { Star chart } \end{aligned}$	Daylight pass distance: 1515.8 km height above Earth: 564.7 km elevation of Sun: $+49^{\circ}$ angular velocity: $0.29^{\circ} / \mathrm{s}$ Disappears 13h01m23s 8.0mag az:125.9 ${ }^{\circ} \mathrm{SE}$ horizon

(3)	12h56m51s			Daylight pass Appears $\quad 12 \mathrm{~h} 50 \mathrm{~m} 02 \mathrm{~s}$ at Meridian Culmination$\mathbf{1 2 \mathrm { h } 5 3 \mathrm { m } 5 3 \mathrm { m } 5 1 \mathrm { s }}$distance: 811.0 km he angular velocity: 0.5 Disappears	7.9 mag 6.6 mag 6.1mag t above s 9.1mag	az: $9.6^{\circ} \mathrm{N}$ az: $0.0^{\circ} \mathrm{N}$ az:288. $8^{\circ} \mathrm{WNW}$ Earth: 689.1km az:207.7 ${ }^{\circ}$ SSW	$\begin{aligned} & \text { horizon } \\ & \mathrm{h}: 21.1^{\circ} \\ & \mathrm{h}: 56.3^{\circ} \\ & \text { elevation of Sun: }+49^{\circ} \end{aligned}$ horizon	
8	12h58m07s	$\begin{array}{r} \text { ARGOS } \\ (25634 \\ 1999-008-\mathrm{A}) \end{array}$ $\rightarrow \text { Ground track } \rightarrow \text { Star chart }$		Daylight pass Appears $\quad 12 \mathrm{~h} 50 \mathrm{~m} 25 \mathrm{~s}$ at Meridian Culmination$\mathbf{1 2 \mathrm { h } 5 4 \mathrm { m } 4 7 \mathrm { s } 0 7 \mathrm { s }}$distance: 989.3 km he angular velocity: 0.4 Disappears	6.7 mag 5.4 mag 5.0mag t above s 7.8 mag	az: $10.6^{\circ} \mathrm{N}$ az: $0.0^{\circ} \mathrm{N}$ az: $290.6^{\circ} \mathrm{WNW}$ Earth: 840.2 km az:210.2 ${ }^{\circ}$ SSW	$\begin{aligned} & \text { horizon } \\ & \mathrm{h}: 22.6^{\circ} \\ & \mathrm{h}: 55.8^{\circ} \\ & \text { elevation of Sun: }+49^{\circ} \end{aligned}$ horizon	
(3)	12h58m48s	$\begin{aligned} & \text { Cosmos } 220 \text { Rocket } \\ & \quad(03230 \\ & 1968-040-B) \\ & \rightarrow \text { Ground track } \rightarrow \text { Star chart } \end{aligned}$		Daylight pass Appears 12 h 52 m 24 s Culmination 12 h 58 m 48 s distance: 816.1 km he angular velocity: 0.5 at Meridian Disappears 13 h 01 m 13 s Dis	8.7 mag 5.8mag t above s 6.3 mag 7.8 mag	az:217.1 ${ }^{\circ} \mathrm{SW}$ az:297.6º WNW Earth: 604.2 km az: $0.0^{\circ} \mathrm{N}$ az: $18.2^{\circ} \mathrm{NNE}$	```horizon h:45.30 elevation of Sun: +49' h:22.5 horizon```	
(3)	12h59m36s	$\begin{aligned} & \text { Cosmos } 1803 \\ & (17177 \\ & 1986-094-A) \\ & \rightarrow \text { Ground track } \rightarrow \text { Star chart } \end{aligned}$		Daylight passAppears $\quad 12 \mathrm{~h} 48 \mathrm{~m} 12 \mathrm{~s}$Culminationdistance: dis59m36s $+49^{\circ}$ angular velocity at Meridian Disappears 13he7m28s 13 h 11 m 06 s	8.4 mag 6.3 mag ht abov $0.21^{\circ} / \mathrm{s}$ 6.8 mag 7.3 mag	az:211.2 ${ }^{\circ} \mathrm{SSW}$ az:289.3 ${ }^{\circ}$ WNW Earth: 1506.1 az: $0.0^{\circ} \mathrm{N}$ az: $8.2^{\circ} \mathrm{N}$	```horizon h:46.1' m elevation of Sun: h:12.1* horizon```	
(3)	12h59m47s	Cosmos 1072 Rocket $\begin{aligned} & (11239 \text { 1979-003-B) } \\ & \rightarrow \text { Ground track } \rightarrow \text { Star chart } \end{aligned}$		Daylight pass Appears $\quad 12 \mathrm{~h} 51 \mathrm{~m} 32 \mathrm{~s}$ Culmination 12 h 59 m 47 s distance: 1496.1 km h angular velocity: 0.28 at Meridian 13 h 06 m 54 s	8.8mag 6.5 mag ht abov s 7.6 mag	az:214.70 SW az:289.1 ${ }^{\circ}$ WNW Earth: 966.4 k az: $0.0^{\circ} \mathrm{N}$	```horizon h:35.30 elevation of Sun: +49 h:4.5```	

				Disappears	13h08m12s	7.8 mag		N	horizon	
5	12h59m54s	$\begin{aligned} & \text { Rocket } \\ & (11804 \text { 1980-039-B }) \\ & \rightarrow \text { Ground track } \rightarrow \text { Star chart } \end{aligned}$	```Daylight pass Appears distance: 1387.6km height above Earth: 999.3km elevation of Sun: +49` angular velocity: 0.30%/s at Meridian 13h06m42s 7.5mag az: 0.0}\mp@subsup{0}{}{\circ}\textrm{N}\mathrm{ h:6.8 Disappears 13h08m34s 7.8mag az: 4.70}\textrm{N}\mathrm{ horizon```							
(3)	13h00m04s	\&AR Lupe 2 Rocket (31798 2007-030-B) \rightarrow Ground track \rightarrow Star chart								
5	13h00m47s									
38	13h01m22s	Nadezhda 4 Rocket $\quad(23180$ $1994-041-B)$ \rightarrow Ground track \rightarrow Star chart	```Daylight pass Appears 12h52m41s 7.3mag az:347.90}\textrm{NNW}\mathrm{ horizon Culmination 13h01m21s 6.1mag az:267.0}\mp@subsup{0}{}{\circ}\textrm{W}\quad\textrm{h}:61.\mp@subsup{1}{}{\circ distance: 1087.6km height above Earth: 970.9km elevation of Sun: +49` angular velocity: 0.40%/s Disappears 13h09m52s 8.8mag az:185.5*}\textrm{S}\mathrm{ horizon```							
(3)	13h02m19s	NOSS 3-6 Rocket (38770 2012-048-N) \rightarrow Ground track \rightarrow Star chart								

85	13h02m38s	$\begin{aligned} & \quad \text { Cosmos } 1656 \\ & \quad(15755 \\ & 1985-042-A) \\ & \rightarrow \text { Ground track } \rightarrow \text { Star chart } \end{aligned}$	
(5)	13h03m41s	$\begin{aligned} & \text { Cosmos } 2428 \\ & \quad(31792 \\ & 2007-029-A) \\ & \rightarrow \text { Ground track } \rightarrow \text { Star chart } \end{aligned}$	
(5)	13h03m53s		
65	13h04m20s		
(3)	13h04m59s	$\begin{aligned} & \quad(13120 \\ & 1982-027-A) \\ & \rightarrow \text { Ground track } \rightarrow \text { Star chart } \end{aligned}$	Daylight pass Appears 12h59m23s 7.4 mag az: $348.9^{\circ} \mathrm{N}$ horizon at Meridian 13h04m22s 5.1 mag az: $0.0^{\circ} \mathrm{N}$ $\mathrm{h}: 58.1^{\circ}$ Culmination 13 h 04 m 59 s 5.9 mag az: $78.9^{\circ} \mathrm{E}$ $\mathrm{h}: 83.1^{\circ}$ distance: 465.2 km height above Earth: 462.3 km elevation of Sun: $+50^{\circ}$ angular velocity: $0.96^{\circ} / \mathrm{s}$

Glossary:

Time
The local time in 24-hour format at which the satellite is visible at its best. The satellite may be observable before this time. 0:00 or 0 h 00 m is midnight, 12 h is noon, 18 h is 6 pm . The time zone is the one indicated on the left of the Earth icon on top of (almost) each page. Daylight saving is applied automatically.

Appears

Local time at which the satellite appears visually. The first figure indicates the visua brightness of the object. The smaller the number, the brighter and more eye-catching it appears to an observer. The units are astronomical magnitudes [m].
Azimuth is given in degrees counting from geographic north clockwise to the east direction. The three-character direction code is given as well. In case the satellite exits from the Earth shadow and comes into the glare of the Sun, the elevation above horizon is given in degrees for this event. If this figure is omitted, the satellite is
 visible straight from the horizon.

Culmination

Time at which the satellite reaches his highest point in the sky as seen from the observer. For description of the figures see Appears
Visually "better" passes of satellites are indicated by highlighting the information. The selection within the list of all possible transits is coupled with the observer level, the daylight, and several other conditions.

at Meridian

Time of the transit of the meridian, i.e. the satellite is due South or due North. At this time, the satellite will not reach its highest point of the pass. Look for culmination.

Disappears

Local time of visual disappearance of the satellite. This may either be the time at which the satellite moves below the observer's horizon or the entry of the object in the shadow of Earth (the elevation is given for this event). The low Earth orbiting (LEO) satellites are usually visible for about 10 seconds more than the listed time, when they start fading rapidly.

Magnitude/Mag:

The magnitude indicates the visual brightness of an object. The brightest star (Sirius) reaches -1.4 m , whereas 6 m is the limit of the unaided eye. Venus, the brightest planet, reaches -4 m . The Moon at first quarter is -8 m , about the same magnitude that the brightest Iridium flares can produce.

Object

The name and identification information of the satellite. Besides the name, the number in the catalog of the USSPACECOM is given (5-digits code, called Satellite, NORAD or NASA Catalog Number and
USSPACECOM object number), and the International Designator Code in the form launch year - launch number of the year - launch part (usually one launch produces several orbiting objects). The laster is also called COSPAR designation and NSSDC ID.

Spy Satellites:

Satellites with name USA are US military satellites (common names e.g., Keyhole KH, Lacrosse).

Close to Moon/Sun

The satellite is closer than 1.5 degrees from the center of the Moon or the Sun, but the satellite does not cross in front of the Moon/Sun. The direction and distance to the center line on Earth is given. For the Sun, move to the indicated center line position and observer with proper equipment. By no means observe the Sun without special filters!

Crosses the disk of Moon/Sun:

The satellite passes in front of the Moon or the Sun; the event may be observed using a small telescope (equipped with special mylar filters for the Sun only!), especially if the event takes place in broad daylight. The direction and distance to the center line on Earth is given. Moon phases are not checked for. The timing may slightly change due to the quality and age of the used orbital elements and active orbit maintenance. By no means observe the Sun without special filters! Please feel free to report successful observations!

Separation

Angular distance of an object (e.g., star) with regard of the reference object (e.g., main star or center of moon), measured among the center of figures. Often, this value is given for the closest distance among two objects.

Position Angle / PA

Angle, defining a position on an apparent disk or the position of e.g. a dimmer star (or the anti-solar point for lunar eclipses) with regard of the main star or the center of disk. It is counted around the reference points (center of disk/brighter star) from celestial north direction 0° to east (left) 90°, south 180° to wes t (right) 270° in counter clockwise direction.

Position Angle rel. Vertex

Angle, defining a position on an apparent disk. It is counted around the reference points (center of disk) from local up, zenith direction 0° to east (left) 90°, south 180° to wes t (right) 270° in counter clockwise direction.

Clock-face Direction

In a simple clock-face coordinate system with the clock face superimposed on the satellite itself, with 12:00 o'clock being at the top and 9:00 o'clock being at the left, the satellite will seem to move toward the given direction. This number is helpful when observing with binoculars.

Daylight pass

This satellite pass over the observer is taking place on broad daylight and cannot be observed without special equipment (automated guided telescope or radio ham equipment).

Radio pass

The satellite is not outside the shadow of Earth during the whole pass (hence not lighted by the Sun) and is therefore not visible. However, using radio equipment, the satellite can be detected.

Ascending/descending Orbit:

Satellites are orbiting around the earth center. Therefore the point on the Earth surface "below" the satellite (i.e., the sub-satellite point) crosses the equator twice every orbit. The part of the orbit with northernbound motion component is called ascending, and a southernbound motion is called descending

Rise
The satellites rises above the horizon of the observer (cf. Appear for visual rising of the satellite).
Set
The satellites sets below the horizon of the observer, but may not have been visible before (cf. Disappear).

Side-look

Time at which the observer is passing exactly at the side of the satellite (as seen from the satellite).

Off-Nadir

Angle at which the observer appears from the nadir (down direction) as seen from the satellite.
Squint angle
Angle relative to the satellite orbit; flight direction is 0°. The angle is counted clockwise, with right looking at 90° and left looking at 270°.

Range

Distance to the satellite.

0-Doppler / Zero-Doppler

Time at which the range between satellite and observer does not change, i.e., the range rate is zero

Forecasted Decay

All Earth orbiting satellites are exposed to atmospheric drag, which lowers the orbit. Usually, this is countermeasured by frequent firings of the rocket engines - as long there is propulsion available. At an altitude of about 120 km , the objects are destroyed in the atmosphere by a fiery play; the over 100 km long light trace is visible even at daylight. Predications however are difficult. CalSky calculates the evolution of the satellite elements and the time of final decay based on SatEvo by Alan Pickup.

This material is ©1998-2014 by Arnold Barmettler (Imprint / Privacy policy / Disclaimers). Hard copies may be made for personal use only. No electronic copy may be located elsewhere for public access. All pages are dynamically generated. The usage of web copy tools is strictly prohibited. Commercial usage of the data only with written approval by the author. If you have any questions or comments, or plan to use results from CalSky in your publications or products, please contact us by e-mail. Credits. Dieser Service wird in der Schweiz entwickelt und betrieben; Sie können uns auch gerne auf Deutsch schreiben

$$
\begin{array}{cc}
\text { Software Version: } 3 \text { September } 2014 & 4 \text { Sep 2014, } 15: 09 \text { UTC } \\
\text { Database updated } 7 \mathrm{~min} \text { ago } & 589 \text { minutes left for this session }
\end{array}
$$

Current Users: 203, Runtime: 2.8s
27 days left in ad-free mode

