The Calendar－Sky

The astronomical calendar contains thousands of events per day for every point on Earth．We know that you only care for a very few of these events and hence we let you personalize your own Astro－Calendar．You may primarily do so by switching to your appropriate user level，and by selecting some of the three dozens categories．

In parentheses are forced limits for the maximum calculation interval．The celestial calendar is to be found further below on this page and will appear within some seconds after pressing the Go！－Button（depending on the complexity of your selections）．The calendar is created especially for you．The higher your user level，the more complex objects you selected，the longer it does take to calculate．Please do not press the reload－button；the calculations will take significantly longer．

Calendar and Timekeeping	
	Space Calendar：
\square	Birthdays，Rocket
	Launches
\square	Local Events（Talks，
\square	Exhibitions）
\square	NASA TV Guide
\square	Local Telescope Dealers
\square	Public Holidays
\square	Saint＇s Day
\square	Zodiac of today．Change of Zodiac \square
Islamic，Indian，Persian	
and Hebrew Calendar	
\square	Week Number
\square	Sundials／GPS Time／ Current Time Definitions \square
\square	Julian Day Number
\square	Sidereal Time
\square	Local Magnetic Field

General events	
\square	Lunar Occultations（2
months）	
\square	Planetary Conjunctions
\square	Lunar Eclipses
\square	Solar Eclipses and
\square	Transits
\square	Meteor Streams
\square	Planetary Phenomena Phenomena
\square	The Sun
\square	Asteroids（6 months）
\square	Comets

Earth orbiting satellites		Dimmer and more difficult objects	
回	month）	\square	Jupiter：Great Red Spot
v	Iridium satellites（14 days）	\square	Jupiter＇s Satellites：
回	Passes of other bright		position
	satellites（1 day，slow！）	\square	Saturn：Satellite events and storms
Daily reoccurring events		\square	Saturn＇s Satellites：
冈	Sun and Moon		position
\square	Planets	\square	light／Gegenschein
\square	Asteroids	\square	Variable Stars（3 months）
		\square	Supernovae
\square	Comets	$\square \quad$ Binary Stars	
\square	Meteor Streams		
$\square$$\square$	Polar Star Transits Weather Balloons	Deep sky objects	
			Milky Way
		\square	Galaxies
		\square	Open Star Clusters
		\square	Globular Star Clusters
		\square	Nebula

Friday 17 August 2012

Time（24－hour clock）	Object（Link）	Event
（8）	Observer Site	narnhac，France WGS84：Lon：＋2d46m42．39s Lat：+44 d 55 m 41.00 s Alt： 1047 m All times in CET or CEST（during summer）
（s） $23 \mathrm{~h} 20 \mathrm{m00s}$	$\begin{aligned} & \quad(25634 \\ & 1999-008-A) \\ & \text { ARGOS } \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears 23h11m49s 4.8 mag $\mathrm{az}: 187.8^{\circ} \mathrm{S}$ $\mathrm{h}: 28.4^{\circ}$ Culmination 23h14m35s 4．3mag az：258．4

(3)	23h20m00s	$\begin{aligned} & \quad \begin{array}{r} \text { Cosmos 2441 } \\ (33272 \end{array} \\ & 2008-037-A) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$		Appears $\mathrm{h}: 31.9^{\circ}$ Culmination $\text { h: } 54.3^{\circ}$ distance: of Sun: -22 Disappears	23h16m40s 23h18m40s 4.4 km hei angular v 23h25m43s	4.4 mag 4.2 mag ht above locity: 9.0mag	$\begin{aligned} & \text { az:198.4} \\ & \text { az:259.8 } \\ & \text { Earth: } 720 \\ & 0.51^{\circ} / \mathrm{s} \\ & \text { az: } 342.9^{\circ} \end{aligned}$	SSW W 0.9 km NNW	elevat horizon
(3)	23h20m00s	(Cosmos 1328 Rocket $\begin{array}{\|l} (12988 \\ 1981-117-B) \end{array}$ $\rightarrow \text { Ground track }$ \rightarrow Star chart		Appears $\mathrm{h}: 49.4^{\circ}$ Disappears horizon	$\begin{aligned} & 23 \mathrm{~h} 15 \mathrm{~m} 54 \mathrm{~s} \\ & 23 \mathrm{~h} 22 \mathrm{~m} 21 \mathrm{~s} \end{aligned}$	4.5 mag 8.7 mag	$\begin{aligned} & \mathrm{az}=85.6^{\circ} \\ & \mathrm{az}: 14.2^{\circ} \end{aligned}$	E NNE	
(3)	23h20m00s	$\begin{aligned} & \quad \begin{array}{l} \text { Terra } \\ \quad(25994 \\ 1999-068-A) \end{array} \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$		Appears $\mathrm{h}: 46.2^{\circ}$ Culmination h: 49.0° distance: of Sun: -22 at Meridian Disappears	23h17m12s 23h17m46s 5.2 km hei angular v 23h21m35s 23h24m40s	2.8 mag 2.8 mag ht above locity: 5.8 mag 7.6 mag	$\begin{aligned} & \text { az: } 94.6^{\circ} \\ & \text { az: } 70.7^{\circ} \\ & \text { Earth: } 708 \\ & 0.48^{\circ} / \mathrm{s} \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 352.2^{\circ} \end{aligned}$	E ENE . 9 km N N	elevat h: 14.7° horizon
(3)	23h20m00s	Rocket Rosmos 2084 $(20666$ $1990-055-D)$ \rightarrow Ground track \rightarrow Star chart		Appears $h: 60.3^{\circ}$ Disappears horizon	$\begin{aligned} & 23 \mathrm{~h} 17 \mathrm{~m} 57 \mathrm{~s} \\ & 23 \mathrm{~h} 24 \mathrm{~m} 15 \mathrm{~s} \end{aligned}$	4.2 mag 7.9 mag	$\begin{aligned} & \mathrm{az}: 99.9^{\circ} \\ & \text { az: } 41.7^{\circ} \end{aligned}$	E NE	
(3)	23.3h	§uranus		Magnitude= at S at 4.5 $R A=0 \mathrm{~h} 30 \mathrm{~m} 05$ Elongation	$\begin{array}{rr} 8 m a g & B 6 \\ \text { (in const } \\ \text { Dec }= & +2^{\circ} \\ 37^{\circ} & \text { Dian } \end{array}$	$\begin{aligned} & t \text { seen } f \\ & \text { llation } \\ & .3^{\prime} \quad(\mathrm{J} 20 \\ & \text { ter }=3.6^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { Irom } 22.9 \mathrm{~h} \\ & \text { Cetus) } \\ & \text { (0) Distanc } \end{aligned}$	$-5 .$ $c e=1$	$\begin{aligned} & \text { h } \quad\left(h_{\text {top }}=\right. \\ & .309 \mathrm{AU} \end{aligned}$
(5)	23.3h	$\uparrow \uparrow+$ Neptune		Magnitude= at S at 2.3h) RA $=22$ h 15 m 53 s Elongation	$\begin{array}{rr} 8 \mathrm{mag} & \mathrm{Be} \\ \text { (in const }^{\mathrm{Dec}}=-11^{\circ} 2 \\ 73^{\circ} \quad \text { Dian } \end{array}$	$\begin{aligned} & \text { t seen } f \\ & \text { llation } \\ & .0^{\prime} \quad(\mathrm{J} 20 \\ & \text { ter }=2.3^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { irom } 23.2 \mathrm{~h} \\ & \text { Aquarius) } \\ & 00 \text {) Distanc } \end{aligned}$	$-5 .$ $\mathrm{ce}=2$	$\begin{aligned} & \text { h } \quad\left(h_{\mathrm{top}}=\right. \\ & .989 \mathrm{AU} \end{aligned}$
(5)	23.3h	DPluto		Magnitude=14 at S at 22 RA=18h29m42 Elongation		$\begin{aligned} & t \text { seen f } \\ & \text { ellation } \\ & 5^{\prime} \quad(\mathrm{J} 20 \\ & \text { ter }=0.1^{\prime \prime} \end{aligned}$	rom 22.3h Sagittariu 00) Distanc	$\begin{aligned} & 0 \\ & \text { us }) \\ & \mathrm{ce}=3 \end{aligned}$	$\begin{aligned} & \text { h } \quad\left(h_{\text {top }}=\right. \\ & .600 \mathrm{AU} \end{aligned}$
(3)	23.3h	Deep-Sky Observing		Best time in (7.0 hours) prior to mi	erval for ight	serving	dim object	ts: 2	$2.4 h-5 .$
(5)	23h20m48s	$\begin{aligned} & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$		Appears WNW horiz Disappears h: 41.4	23h15m4 23h20m4	-2	$1 m a g$ az: 9mag az:	300 $9 .$	N
(5)	23h20m51s	(KOUNOTORI $(38706$ $2012-038-A)$ \rightarrow Ground track \rightarrow Star chart		Appears horizon Disappears $\mathrm{h}: 41.4^{\circ}$	$\begin{aligned} & 23 \mathrm{~h} 15 \mathrm{~m} 42 \mathrm{~s} \\ & 23 \mathrm{~h} 20 \mathrm{~m} 51 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 9.1 \mathrm{mag} \\ & 4.1 \mathrm{mag} \end{aligned}$	$\begin{aligned} & \mathrm{az}: 299.9^{\circ} \\ & \mathrm{az}: \quad 9.6^{\circ} \end{aligned}$	WNW N	
(3)	23h20m51s	\quad PROGRESS-M $(38738$ $2012-042-A)$ \rightarrow Ground track \rightarrow Star chart		Appears horizon Disappears $\mathrm{h}: 41.4^{\circ}$	$\begin{aligned} & 23 \mathrm{~h} 15 \mathrm{~m} 42 \mathrm{~s} \\ & 23 \mathrm{~h} 20 \mathrm{~m} 51 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 9.1 \mathrm{mag} \\ & 4.1 \mathrm{mag} \end{aligned}$	$\begin{aligned} & \text { az: } 299.9^{\circ} \\ & \text { az: } \quad 9.6^{\circ} \end{aligned}$	WNW N	
(3)	23h21m35s	(Cosmos 1633 Rocket $\begin{aligned} & (15593 \\ & 1985-020-B) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$		Appears horizon Culmination $h: 55.3^{\circ}$ distance: of Sun: -23 Disappears	$\begin{aligned} & 23 \mathrm{~h} 15 \mathrm{~m} 04 \mathrm{~s} \\ & \mathbf{2 3 h} 21 \mathrm{~m} 35 \mathrm{~s} \\ & 36.2 \mathrm{~km} \text { heif } \\ & \text { angular v } \\ & 23 \mathrm{~h} 22 \mathrm{~m} 48 \mathrm{~s} \end{aligned}$	9.1 mag 4. 3mag ht above locity: 4.4mag	$\begin{aligned} & \text { az: } 346.7^{\circ} \\ & \text { az: } 265.7^{\circ} \\ & \text { Earth: } 618 \\ & 0.58^{\circ} / \mathrm{s} \\ & \text { az: } 213.3^{\circ} \end{aligned}$	NNW W 8.7 km SSW	elevat $h: 40.3^{\circ}$
(3)	23h21m43s	Cosmos 2322 Rocket $(23705$ $1995-058-B)$		Appears horizon at Meridian $h: 85.8^{\circ}$	$\begin{aligned} & 23 \mathrm{~h} 13 \mathrm{~m} 38 \mathrm{~s} \\ & 23 \mathrm{~h} 21 \mathrm{~m} 36 \mathrm{~s} \end{aligned}$	8.6 mag 2.8 mag	$\begin{aligned} & \text { az: } 333.9^{\circ} \\ & \text { az: } \quad 0.0^{\circ} \end{aligned}$	NNW N	

		\rightarrow Ground track \rightarrow Star chart	Culmination distance: of Sun: -23 Disappears	$\begin{gathered} 23 \mathrm{~h} 21 \mathrm{~m} 43 \mathrm{~s} \\ 10.7 \mathrm{~km} \text { hei } \\ \text { angular } \\ 23 \mathrm{~h} 23 \mathrm{~m} 15 \mathrm{~s} \end{gathered}$	2.8 mag ht above locity: 2.9mag	$\begin{aligned} & \text { az: } 65.1^{\circ} \\ & \text { Earth: } 841 \\ & 0.50^{\circ} / \mathrm{s} \\ & \text { az:153.20 } \end{aligned}$	ENE . 4 km SSE	$\begin{aligned} & \mathrm{h}: 88.2^{\circ} \\ & \quad \text { elevation } \\ & \mathrm{h}: 50.6^{\circ} \end{aligned}$
cs	23h22m29s	Cosmos 1833 Rocket $\begin{aligned} & (17590 \\ & 1987-027-B) \end{aligned}$ \rightarrow Ground track \rightarrow Star chart	Appears horizon Culmination h: 63.0° distance: of Sun: -23 at Meridian Disappears	$\begin{aligned} & 23 \mathrm{~h} 14 \mathrm{~m} 28 \mathrm{~s} \\ & 23 \mathrm{~h} 22 \mathrm{~m} 29 \mathrm{~s} \\ & 31.2 \mathrm{~km} \text { hei } \\ & \text { angular v } \\ & 23 \mathrm{~h} 24 \mathrm{~m} 14 \mathrm{~s} \\ & 23 \mathrm{~h} 30 \mathrm{~m} 33 \mathrm{~s} \end{aligned}$	6.4 mag 3.9 mag ht above locity: 4.7 mag 7.3 mag	$\begin{aligned} & \mathrm{az}: 213.7^{\circ} \\ & \mathrm{az}: 298.7^{\circ} \\ & \text { Earth: } 843 \\ & 0.47^{\circ} / \mathrm{s} \\ & \mathrm{az}: 0.0^{\circ} \\ & \mathrm{az}: 24.0^{\circ} \end{aligned}$	SSW WNW . 2 km N NNE	elevation h: 42.4° horizon
(5)	23h23m58s	$\begin{array}{\|l} \text { Rocket } \\ \text { Rosmos } \\ \text { Rock } \\ (18959 \\ 1988-020-B) \\ \rightarrow \text { Ground track } \\ \rightarrow \text { Star chart } \end{array}$	Appears horizon at Meridian h: 69. 3° Culmination distance: of Sun: -23 Disappears	23h17m18s 23h23m27s 23h23m58s 1.7 km hei angular v 23h24m21s	9.5 mag 4.5 mag 4.1mag ht above locity: 4.0mag	$\begin{aligned} & \text { az:351.2 } \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 81.9^{\circ} \\ & \text { Earth: } 621 \\ & 0.68^{\circ} / \mathrm{s} \\ & \text { az:161.3 } \end{aligned}$	N N E 1.9 km SSE	
(5)	23h24m52s	$\boldsymbol{\phi}^{\text {Cing }}$ Cosmos 1315 Rocket $\begin{array}{\|l} (12904 \\ 1981-103-B) \end{array}$ \rightarrow Ground track \rightarrow Star chart	Appears horizon Disappears h:55.7 ${ }^{\circ}$	$\begin{aligned} & 23 \mathrm{~h} 19 \mathrm{~m} 03 \mathrm{~s} \\ & 23 \mathrm{~h} 24 \mathrm{~m} 52 \mathrm{~s} \end{aligned}$	8.8 mag 3.8 mag	$\begin{aligned} & \text { az: } 352.6^{\circ} \\ & \text { az: } 52.5^{\circ} \end{aligned}$		
(3)	23h25m20s	Rocket (16111 $1985-090-B)$ \rightarrow Ground track \rightarrow Star chart	Appears h: 40.9° Disappears horizon	$\begin{aligned} & 23 \mathrm{~h} 25 \mathrm{~m} 20 \mathrm{~s} \\ & 23 \mathrm{~h} 30 \mathrm{~m} 28 \mathrm{~s} \end{aligned}$	4.2 mag 8.7 mag	$\begin{aligned} & a z: 42.9^{\circ} \\ & a z=353.9^{\circ} \end{aligned}$		
(5)	23h27m51s	Cosmos 1470 Rocket $\begin{aligned} & (14148 \\ & 1983-061-B) \end{aligned}$ \rightarrow Ground track \rightarrow Star chart	Appears horizon at Meridian $\mathrm{h}: 29.7^{\circ}$ Culmination distance: of Sun: -23 Disappears	23h21m10s 23h25m40s 23h27m51s 3.0 km hei angular v 23h28m01s	9.4 mag 6.4 mag 4.1mag t above ocity: 4.1mag	$\begin{aligned} & \text { az:352.4 } \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 80.8^{\circ} \\ & \text { Earth: } 634 \\ & 0.65^{\circ} / \mathrm{s} \\ & \text { az:104. } 8^{\circ} \end{aligned}$	N N E 4.4 km ESE	
(5)	23h28m14s	Cartosat 1 $(28649$$2005-017-A)$$\rightarrow$ Ground track\rightarrow Star chart	Appears h:59.9 ${ }^{\circ}$ Disappears horizon	$\begin{aligned} & 23 \mathrm{~h} 28 \mathrm{~m} 14 \mathrm{~s} \\ & 23 \mathrm{~h} 34 \mathrm{~m} 42 \mathrm{~s} \end{aligned}$	4.3 mag 9.6 mag	$\begin{aligned} & \text { az: } 71.8^{\circ} \\ & \text { az: } 350.9^{\circ} \end{aligned}$	$\begin{aligned} & \text { ENE } \\ & \mathrm{N} \end{aligned}$	
(5)	23h30m14s	$\begin{aligned} & 1 \quad 122 / \text { NOSS } \\ & 2-3 E \\ & (23936 \\ & 1996-029-E) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears horizon Culmination $h: 63.0^{\circ}$ distance: of Sun: -24 at Meridian Disappears	23h22m27s 23 h 30 m 14 s 8.2 km hei angular v 23h31m22s 23h39m26s	8.0 mag 5.5mag t above ocity: 5.9mag 8.7 mag	$\begin{aligned} & \text { az:227.40 } \\ & \text { az:312.70 } \\ & \text { Earth: } 895 \\ & 0.45^{\circ} / \mathrm{s} \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 37.7^{\circ} \end{aligned}$	SW NW . 4 km N NE	elevation h:52. 8° horizon
68	23h30m51s	NOSS 3 (C)$(11731$ $1980-019-C)$ \rightarrow Ground track \rightarrow Star chart	Appears h:54.70 Disappears horizon	$\begin{aligned} & 23 \mathrm{~h} 30 \mathrm{~m} 51 \mathrm{~s} \\ & 23 \mathrm{~h} 37 \mathrm{~m} 16 \mathrm{~s} \end{aligned}$	6.4 mag 10.3 mag	$\begin{aligned} & \mathrm{az}: 34.5^{\circ} \\ & \mathrm{az}: 38.4^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{NE} \\ & \mathrm{NE} \end{aligned}$	
(5)	23h32m53s	$\boldsymbol{q}^{\text {Cimasmos }} 1400$ Rocket $\begin{aligned} & (13403 \\ & 1982-079-B) \end{aligned}$ \rightarrow Ground track \rightarrow Star chart	Appears horizon Disappears h: 81. 2°	$\begin{aligned} & 23 \mathrm{~h} 26 \mathrm{~m} 30 \mathrm{~s} \\ & 23 \mathrm{~h} 32 \mathrm{~m} 53 \mathrm{~s} \end{aligned}$	9.0 mag 3.5 mag	$\begin{aligned} & \mathrm{az}: 349.7^{\circ} \\ & \mathrm{az}: 49.8^{\circ} \end{aligned}$	N NE	
(5)	23h38m13s	$\boldsymbol{q}^{\mathrm{U}} \mathrm{USA}$ $120 /$ NOSS $\begin{array}{\|l} 2-3 C \\ (23908 \\ 1996-029-C) \\ \rightarrow \text { Ground track } \\ \rightarrow \text { Star chart } \end{array}$	Appears horizon Culmination $\mathrm{h}: 56.3^{\circ}$ distance: of Sun: -24 at Meridian	$\begin{aligned} & 23 \mathrm{~h} 30 \mathrm{~m} 26 \mathrm{~s} \\ & 23 \mathrm{~h} 38 \mathrm{~m} 13 \mathrm{~s} \\ & 53.4 \mathrm{~km} \text { he } \\ & \text { angular } \\ & 23 \mathrm{~h} 39 \mathrm{~m} 36 \mathrm{~s} \end{aligned}$	8.1 mag 5.8 mag ht above ocity: 6.2 mag	$\begin{aligned} & \text { az: } 231.1^{\circ} \\ & \text { az:314.60 } \\ & \text { e Earth: } 90 \\ & 0.42^{\circ} / \mathrm{s} \\ & \text { az: } 0.0^{\circ} \end{aligned}$	SW NW 01.1 k N	

			Disappears	23h47m25s	8.8mag	az: 37.6°	NE	horizo
(3)	23h40m00s	$\begin{aligned} & \text { Rocket } \\ & (16012 \\ & 1985-079-B) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears horizon Culmination h: 78.40 distance: of Sun: -2 Disappears	23h32m24s $23 \mathrm{~h} 40 \mathrm{m00s}$ 2.6 km he angular 23h40m45s	9.9 mag 4.1mag ht above locity: 4.1mag	$\begin{aligned} & \text { az: } 337.2^{\circ} \\ & \text { az: } 251.3^{\circ} \\ & \text { Earth: } 76 \\ & 0.54^{\circ} / \mathrm{s} \\ & \text { az: } 187.1^{\circ} \end{aligned}$	NNW WSW . 3 km S	$\begin{aligned} & \text { elevat } \\ & \mathrm{h}: 64.4^{\circ} \end{aligned}$
(5)	23h41m14s	$\begin{aligned} & \quad(23704 \\ & 1995-058-\mathrm{A}) \\ & \text { Cosmos } 2322 \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears horizon at Meridian h: 39.0 ${ }^{\circ}$ Culmination distance: of Sun: -2 Disappears	23h33m03s 23h39m16s 23h41m14s 2.5 km he angular 23h42m06s	10.0 mag 5.9 mag 4.6 mag ht above locity: 4.5 mag	$\begin{aligned} & \mathrm{az}: 336.2^{\circ} \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 60.6^{\circ} \\ & \text { Earth: } 85 \\ & 0.44^{\circ} / \mathrm{s} \\ & \text { az: } 98.6^{\circ} \end{aligned}$	NNW N ENE . 5 km E	$\begin{aligned} & h: 59.9^{\circ} \\ & \text { elevat } \\ & h: 53.4^{\circ} \end{aligned}$
(5)	23 h 42 m 54 s	$\begin{aligned} & \text { Rocket } \\ & \text { Rosmos } 540 \\ & (06324 \\ & 1972-104-B) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears horizon at Meridian h:58.7 ${ }^{\circ}$ Culmination distance: of Sun: -25 Disappears	23h35m20s 23h41m57s 23h42m54s 5.9 km he angular 23h43m18s	9.8 mag 4.7 mag 4.0mag ht above locity: 4.0mag	$\begin{aligned} & \text { az: } 339.6^{\circ} \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 68.4^{\circ} \\ & \text { Earth: } 76 \\ & 0.55^{\circ} / \mathrm{s} \\ & \text { az: } 115.3^{\circ} \end{aligned}$	NNW N ENE .5 km ESE	$h: 77.5^{\circ}$ elevat $h: 72.0^{\circ}$
(5)	23 h 45 m 05 s	(Cosmos 2360 Rocket $\begin{aligned} & (25407 \\ & 1998-045-B) \end{aligned}$ \rightarrow Ground track \rightarrow Star chart	Appears horizon at Meridian h: 21.6° Culmination distance: of Sun: -2 Disappears	23h37m10s 23h41m54s 23h45m05s 45.9 km h angular 23h45m58s	8.4 mag 5.6 mag 3.7 mag ght abo locity: 3.6 mag	$\begin{aligned} & \mathrm{az}: 338.7^{\circ} \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 55.7^{\circ} \\ & \text { e Earth: } 8 \\ & 0.34^{\circ} / \mathrm{s} \\ & \text { az: } 77.5^{\circ} \end{aligned}$	NNW N NE 0.3k ENE	$h: 39.0^{\circ}$ eleva $h: 36.7^{\circ}$
(3)	23 h 48 m 54 s	$\begin{array}{ll} & 194 / \text { NOSS } \\ 3-4 \mathrm{~A} & \\ (31701 \end{array}$	Appears horizon Culmination $\text { h: } 60.9^{\circ}$ distance:	$\begin{aligned} & 23 \mathrm{~h} 39 \mathrm{~m} 31 \mathrm{~s} \\ & 23 \mathrm{~h} 48 \mathrm{~m} 54 \mathrm{~s} \end{aligned}$	$7.3 \mathrm{mag}$ 4.9mag	$\begin{aligned} & \text { az: } 228.9^{\circ} \\ & \text { az: } 313.0^{\circ} \end{aligned}$	SW NW 60	

33 tems/Events: Export to OutlookiCal 四 Print \triangle E-mail
Used satellite data set is from 18 August 2012
$\square \quad$ Hide glossary

Glossary:

Appears
Local time at which the satellite appears visually. The first figure indicates the visual brightness of the object. The smaller the number, the brighter and more eye-catching it appears to an observer. The units are astronomical magnitudes [m]. Azimuth is given in degrees counting from geographic north clockwise to the east direction. The three-character direction code is given as well. In case the satellite exits from the Earth shadow and comes into the glare of the Sun, the elevation above horizon is given in degrees for this event. If this figure is omitted, the satellite is visible straight from the horizon.
at Meridian
Time of the transit of the meridian, i.e. the satellite is due South or due North. At this time, the satellite will not reach its highest point of the pass. Look for culmination.

Azimuth/az

Azimuth direction of the object is given in degrees counting from geographic north (09 clockwise to the east direction. East is 90°, south 180°, and west 270°. The three-character direction code is given as well. For example, NNW stands for north-north-west.

Best seen between / $h_{\text {max }}$

This is the best visibility time interval of the object, and the time is rounded to the next decimal hour; e.g. 6.4 h corresponds to about $6: 15$ (hh:mm) to $6: 20$, and 18.9 h to about $18: 50$ to $18: 55$. The calculation takes into account the magnitude of the object (required elevation above horizon), and the elevation of the Sun. The time is given in local civil time (LCT), i.e., the time zone and definitions as selected by you. hmax is the maximum altitude over the horizon, that the object reaches during this time period.

Culmination
Time at which the satellite reaches his highest point in the sky as seen from the observer. For description of the figures see Appears. Visually "better" passes of satellites are indicated by highlighting the information. The selection within the list of all possible transits is coupled with the observer level, the daylight, and several other conditions.

Dec., declination, DE

One coordinate used to indicate the position on the sky. It is the angular distance of the object from the celestial equator. North pole, close to Polaris, is 90° north.

Diameter

Diameter is the geocentric apparent angular diameter of a celestial object (topocentric for artificial satellites). The value is given in seconds of arc for planets and satellites, and in minutes of arc for Sun and Moon.

Disappears

Local time of visual disappearance of the satellite. This may either be the time at which the satellite moves below the observer's horizon or the entry of the object in the shadow of Earth (the elevation is given for this event). The low Earth orbiting (LEO) satellites are usually visible for about 10 seconds more than the listed time, when they start fading rapidly.

Elongation

The elongation is the angular separation a celestial body and the central body (Sun, for moons: Jupiter or Saturn), as seen from the Earth mass center.

International Space Station ISS

The manned ISS is according to NASA the biggest and most complex scientific project in history. During twilight passed, the space station is easily seen by everyone as a strikingly bright and silently running star. It crosses the sky in a few minutes basically from west to east.

J2000, precession, nutation

The plains of ecliptic and equator shift with time by perturbations from the Sun, Moon and planets. The long-term shift is called precession; the short periodic variations are called nutation. The given celestial coordinates are referred to the true direction of the vernal equinox and the true obliquity of the ecliptic to the standard reference time 1 January 2000. For this date many star charts and coordinate tables are printed.

Magnitude/Mag

Brightness of an object considered as a point source of light, on a logarithmic scale.\Visual limiting magnitude is about 6 mag, whereas the brightest star Sirius reaches -1.4 mag . The Hubble Space Telescope can image objects as dim as 29mag.

R.A., right ascension, RA

One coordinate used to indicate the position on the sphere. It is the angular distance of the object from the spring equinox measured along the celestial equator, expressed in hours of arc.

Time and Date

Date of validity of calculated output in local time and date, taking into account daylight saving time as well (see the current time zone on the left of the Earth icon on top right of almost all pages). The time is given as hours:minutes:seconds, or 00h00m00s. The time may also be rounded and given in decimal form, in order to correspond to the accuracy of the calculation: e.g., 10.1 h means that the event will take place at about 5 minutes past 10 o'clock. This may also happen for days: 4.3 d corresponds to the fourth day at around 7 o'clock. The start time is taken as selected by you, i.e., this is not necessarily at midnight. For intervals shorter than one day, decimal days are given. Times are given in 24 hour format (0 hOOm is midnight, 12h: noon, 18h: 6 pm .)

WGS84 / Geographical Coordinates

Geographical coordinates are given by the angles longitude (Lon), latitude (Lat), and altitude in meters (Alt). A place north of the equator at marked by N or + , places south of the equator by S or - . The longitude from the meridian of Greenwich is counted positive towards east (E). Places west from Greenwich are marked W or by -. The geographical coordinates refer to an ellipsoid, which fits the true shape of the Earth (geoid). The geoid corresponds to calm sea surface. The keyword "Geographic:" uses the local ellipsoid as reference system. WGS84 mark coordinates referring to the WGS84 ellipsoid. The difference in altitude to the geoid sums up to 100 meters and is called geoid undulation. This is corrected for when tagged "MSL" (mean sea level), such that the origin of the height system is at sea level.

Top

This material is ©1998-2014 by Arnold Barmettler (Imprint). Hard copies may be made for personal use only. No electronic copy may be located elsewhere for public access. All pages are dynamically generated. The usage of web copy tools is strictly prohibited. Commercial usage of the data only with written approval by the author. If you have any questions or comments, or plan to use results from CalSky in your publications or products, please contact us by e-mail. Credits. Dieser Service wird in der Schweiz entwickelt und betrieben; Sie können uns auch gerne auf Deutsch schreiben.

Software Version: 23 January 2014
Database updated 12 min ago Current Users: 170

29 Jan 2014, 15:44 UTC
598 minutes left for this session / Mode for our sponsors

- Web © CalSky.com

